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Abstract

Sub-additivity and variability are ubiquitous response motifs in 
the primary visual cortex (V1). Response sub-additivity enables the 
construction of useful interpretations of the visual environment, 
whereas response variability indicates the factors that limit the 
precision with which the brain can do this. There is increasing evidence 
that experimental manipulations that elicit response sub-additivity 
often also quench response variability. Here, we provide an overview 
of these phenomena and suggest that they may have common origins. 
We discuss empirical findings and recent model-based insights into 
the functional operations, computational objectives and circuit 
mechanisms underlying V1 activity. These different modelling 
approaches all predict that response sub-additivity and variability 
quenching often co-occur. The phenomenology of these two response 
motifs, as well as many of the insights obtained about them in V1, 
generalize to other cortical areas. Thus, the connection between 
response sub-additivity and variability quenching may be a canonical 
motif across the cortex.
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have, thus far, been less extensive than in these other species (but 
see refs. 49–51).

Experimental observations
Response sub-additivity
In cat and monkey V1, layer 4 neurons exhibit numerous response 
properties that are fundamentally different from those of the thalamic 
neurons from which they receive feedforward inputs. These proper-
ties include selectivity for the orientation, direction of motion, and 
distance of a stimulus52,53. A longstanding view, pioneered by Hubel 
and Wiesel, holds that this selectivity arises from the alignment of 
the receptive fields of the presynaptic thalamic relay cells52. In its sim-
plest form, this framework predicts that V1 receptive fields perform a 
spatio-temporal linear filtering operation on visual input, followed by 
a thresholding operation to transform intracellular signals into spikes. 
This model for V1 responses is at once simple, elegant and powerful.  
It enabled neuroscientists to approach a fundamental biological 
question — how do cortical sensory circuits transform their input into a 
novel representation of the visual environment? — through the princi-
pled abstraction of a linear system at a time when little was known about 
the cortical representation of visual information. The chief benefit of 
this approach is that it readily generates quantitative predictions of the 
responses that will be elicited by arbitrary visual stimuli, and, to a first 
approximation, these predictions are quite good. For example, a model 
that includes a linear receptive field and a static threshold nonlinear-
ity can explain V1 selectivity for elementary stimulus attributes such 
as position, scale, orientation, and speed and direction of motion54. 
However, cortical cells also exhibit clear violations of linearity that go 
beyond a static threshold nonlinearity: these often manifest through 
the phenomenology of sub-additivity.

One prominent example of sub-additivity arises when a masking 
stimulus is superimposed on a stimulus whose orientation, spatial fre-
quency and size match the preference of the cell under study (Fig. 1c). 
Masking stimuli can suppress responses to the preferred stimulus 
across a broad range of spatial frequencies6,8, orientations6,7 and tem-
poral frequencies7,55,56. As discussed in the ‘Introduction’, responses of 
V1 neurons to stimuli presented within the receptive field can also be 
substantially diminished by stimuli presented outside the receptive 
field2,3,11,57. The strength of this ‘surround suppression’ depends on 
the exact position of the surround stimulus (the larger the distance 
from the receptive field centre, the weaker the suppression58) and 
its similarity to the stimulus presented within the classical receptive 
field (the larger the resemblance, the stronger the suppression4,11,59,60).

A different example of sub-additivity comes from contrast sum-
mation experiments (Fig. 1c), in which the same stimulus is presented 
at various contrasts. For a linear system, scaling the contrast of an 
effective stimulus will scale the response by the same factor, a property 
known as ‘response homogeneity’ in linear systems analysis. However, 
this is not what happens in the visual cortex. Instead, with increasing 
contrast, the responses of V1 cells typically grow at a faster than linear 
rate for stimuli with low contrasts. Above a threshold (typically rela-
tively low) level of contrast, the responses grow at a slower than linear 
rate and, at higher contrasts, they may approach saturation5,9. This 
sublinear or saturated response is immediately present at response 
onset and occurs for preferred and non-preferred stimuli61. Thus, as 
soon as stimulus contrast exceeds a low level, sub-additivity is a general 
property of cortical contrast summation.

Sub-additivity induced by stimuli in the receptive field centre and 
that induced by stimuli in the surround share important properties, 

Introduction
The primary visual cortex (V1) has long been a model system for study-
ing cortical circuitry and computations. In recent decades, two major 
foci of study in V1 have been response sub-additivity and response 
variability. Response sub-additivity involves phenomena in which the 
neuronal response to two simultaneously presented stimuli is less than 
the sum of the responses to the two stimuli presented independently 
(also referred to as sublinear response summation). For example, V1 
cells have distinct spatial receptive fields (defined as the locations in 
visual space in which the presentation of a stimulus elicits an increase 
in activity), beyond which lies the receptive field surround (Fig. 1a). 
Although ineffective by itself, the presentation of a stimulus within 
the surround often suppresses the response to a stimulus presented 
within the receptive field1 (Fig. 1a). Similarly, for many neurons, dou-
bling the contrast of a medium contrast stimulus presented within the 
classical receptive field does not double the neural response. Thus, 
sub-additive effects occur for stimuli presented outside1–4 and within5–9 
the classical receptive field, and for preferred and non-preferred stimu-
lus orientations3,6,7,9. The sub-additivity of responses to a compound 
stimulus is better described as a divisive than as a subtractive interac-
tion between the responses to its two constituent stimuli10,11. Response 
variability involves phenomena in which repeated presentations of the 
same stimulus elicit variable responses in cortical cells (Fig. 1a). This 
variability is evident both in the cells’ membrane potential12–14 and 
in their spiking activity15–17. Response variability in the visual cortex 
appears largely random18,19, exhibits strong dependence on features of 
the stimulus (such as its contrast)20,21, has a non-trivial spatio-temporal 
structure22–27 and is often well described by a doubly stochastic process 
model of spike generation28–33.

Response sub-additivity and variability feature prominently in 
the literature because they provide directly observable indications 
of the brain processes that enable us to perform natural perceptual 
tasks on the one hand (nonlinear neural transformations34,35) and 
those that are traditionally believed to limit our ability to do so on 
the other hand (neural information loss36,37). These response motifs 
have largely been studied independently from each other. However, 
it has become apparent that experimental manipulations that elicit 
sub-additivity often also change variability. In particular, response 
sub-additivity often co-occurs with variability quenching (a decrease 
in neural variability at stimulus onset, or when two stimuli are pre-
sented simultaneously compared with either being presented alone). 
This has been observed for experimental manipulations of stimuli 
within21,33 and beyond the classical receptive field38–41 (Fig. 1b,c). We 
propose that this is not mere coincidence. Recent theoretical stud-
ies of the functional operations, representational objectives and 
circuit mechanisms underlying V1 activity all suggest that response 
sub-additivity and variability quenching may be intimately connected. 
The aim of this Perspective is to describe what is known about this con-
nection. We first discuss the connection between sub-additivity and 
quenching through the lens of models that seek to offer an economic 
description of the transformations that govern stimulus–response 
relations in V1. Next, we consider this connection from the viewpoint of 
models that seek to identify the computational and representational 
goals that shape V1 activity. Finally, we discuss this connection from a 
mechanistic perspective on cortical circuitry and computation. Note 
that we primarily discuss data collected in cat and monkey. Recent 
work in rodent V1 has revealed similar sub-additive phenomena (and 
is rapidly advancing our understanding of the underlying circuit 
mechanisms42–48), but studies of response variability in rodent V1 
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but also differ in critical regards. In both cases, the masking stimu-
lus tends to act as if it divides the contrast of the stimulus presented 
in the receptive field by a constant fraction3,9,62. This observation 
has motivated attempts to build stimulus–response models of V1 
activity that capture both types of sub-additive effects with a sin-
gle model component. However, surround suppression is partially 
delayed relative to response onset63–65, exhibits interocular transfer64 
and is modified by contrast adaptation64. None of this is true for 
within-receptive-field violations of linearity61,64,66 (though see ref. 67), 

suggesting that the two types of sub-additive effects have distinct  
mechanistic origins.

V1 response sub-additivity might arise at any stage of the 
visual pathway: the retina, lateral geniculate nucleus of the thala-
mus, or V1. Recent studies have explored the mechanistic origin of 
V1 response sub-additivity by combining visual stimuli with direct 
optogenetic stimulation of the visual cortex (Fig. 1c). In macaque and 
marmoset V1, responses to optogenetic and visual stimulation com-
bine sub-additively41,68, suggesting that cortical circuits contribute 
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Fig. 1 | Response sub-additivity and variability quenching co-occur under 
various experimental manipulations. a, Simulated responses of a V1 neuron  
to three patches cropped from the same image using differently sized apertures. 
Details of the model simulation are described in Supplementary Information. 
In brief, spikes were generated by simulating a Poisson point process with an 
underlying stimulus-dependent rate that is multiplied by a stimulus-independent 
response gain that varies across trials28. Spike times are plotted as a raster 
(second row), with each tick representing one spike. Each row depicts a repeated 
presentation of the same stimulus. Different aperture sizes are associated with 
different levels of responsiveness, as also shown in neurons recorded in vivo3,4. 
Within each raster, there is considerable variability in spiking activity across 
trials, again replicating the findings of experiments in vivo12,17. This variability in 
part arises from variability in firing rate (third row). The rate variability decreases 
with stimulus size, as is the case for real V1 cells both at the level of spike counts39 
and, relatedly131,184, membrane potentials13,21. The associated spike count 
distributions (fourth row) were obtained by using a counting window whose 
length matches the total stimulus duration. In experimental studies, response 

mean and response variance are computed from this distribution, not from the 
generative process itself. b, Spike count variance plotted as a function of spike 
count mean for the simulated size tuning experiment shown in part a. Larger 
symbol sizes indicate larger stimulus apertures. Responses initially increase with 
stimulus size, but begin to decrease as the stimulus engages the suppressive 
surround. This suppressive effect co-occurs with a change in the relative amount 
of response variability, measured as the variance-to-mean ratio (the Fano factor), 
as also seen in experiments in vivo39. On these logarithmic axes, lines with a slope 
equal to one trace out a constant Fano factor (dashed lines show Fano factors of 
1, 2 and 4). The blue, purple and red circles indicate the three conditions shown 
in part a. c, Summary of some other classical experimental manipulations that 
elicit both response sub-additivity3,5,6,41 and variability quenching21,33,39,41. In these 
experiments, a stimulus presented in the classical receptive field is combined 
with either an annulus presented in the surround (top row), an orthogonally 
oriented mask (second row), an identical mask (third row) or optogenetic 
stimulation of the cortex (bottom row, icon on the right represents a laser).
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to at least some forms of sub-additivity. Note, however, that in these 
studies, the illuminated patch of cortex was large enough to engage 
lateral connections thought to be involved in surround suppression57. 
Results may differ if the optogenetic stimulation is confined to the 
receptive field centre.

Response variability
Sensory neurons transmit information about the external world via 
sequences of action potentials that are inherently variable. This is 
also true of area V1: repeated presentations of identical visual stimuli 
elicit different patterns of spiking activity16,17,20. The origins of this 
variability are still unknown, but its consequences may be profound. 
If this variability represents irreducible noise, then it will limit the reli-
ability with which neural populations can represent sensory events 
and, ultimately, the capacity of the organism to perform perceptual 
tasks. Motivated by this insight, physiologists have made considerable 
efforts to directly compare neuronal and psychophysical sensitivity — 
an enterprise pioneered by Werner and Mountcastle69. This comparison 
is most meaningful when it involves neurons that are suitably tuned 
for the task under consideration and when sensitivity estimates are 
based on physiological and behavioural data obtained in the same ani-
mals from the same set of trials70. Studies that meet these criteria have 
consistently reported that the sensitivity of some individual sensory 
neurons rivals the behavioural capacity of well-trained macaque mon-
keys. For example, the ability of V1 cells to signal changes in stimulus 
orientation closely approximates perceptual orientation acuity71–73, 
whereas cells in visual cortical area MT exhibit sensitivity for visual 
motion that is very similar to perceptual motion sensitivity74. This is 
puzzling if neural variability is considered simple noise, as one would 
expect that behavioural decisions should rely on averaging the noisy 
activities of many neurons and they should, thus, be more reliable 
than the responses of individual neurons. By violating this expecta-
tion, these findings sparked an enormous interest in the origins and 
role of neural response variability. Here, too, many found it fruitful 
to approach these fundamental biological questions by considering 
a principled abstraction that generates quantitative predictions for 
arbitrary stimuli: the Poisson point process.

Which aspects of a spike train are signal and which are noise? One 
extreme possibility is that only the number of spikes realized during 
a temporal interval matters, and that there is no information in the 
exact timing of each spike18. This concept is formalized by the Pois-
son point process. The Poisson point process is the simplest stochastic 
point process and is fully characterized by a single firing rate param-
eter that represents a reproducible response to a sensory stimulus. 
If this rate is fixed over time, the process is said to be homogeneous; if 
it varies over time, it is inhomogeneous75. Both variants give rise to 
Poisson-distributed spike counts. A hallmark of this distribution is 
a spike count variance across repeated measurements that matches 
the spike count mean, regardless of the length or placement of the 
time interval over which spikes are counted. In other words, the ratio 
of the variance to the mean, a statistic known as the Fano factor, is 
always one. In visual cortex, this prediction enjoys some support. Spike 
count variance often approximately equals the mean17,76. However, 
some cortical spiking statistics exhibit clear deviations from a Poisson 
distribution. This most commonly manifests in the form of excess 
variance. When the mean count is high, either owing to a high firing 
rate or owing to the use of a long counting window, super-Poisson 
variability (more variability than expected from a Poisson process) 
becomes apparent17,28,31,76. Statistically, both cases of super-Poisson 

variability can be explained by extending the Poisson process with a 
slowly fluctuating gain signal that modulates the rate and varies from 
trial to trial28,29 (thus, creating a doubly stochastic process known as 
the ‘modulated Poisson model’, Fig. 1a). Empirically, however, the 
dependency of response variance on response mean makes it dif-
ficult to identify changes in response variability that are not simply a 
consequence of changes in response mean. One way to overcome this 
challenge is to estimate the Fano factor using an analysis procedure that 
corrects for differences in mean response level22 (but see ref. 77). This  
statistic is called the mean-matched Fano factor. It generally exceeds 1  
in cortex and, under the Poisson assumption, represents a measure of 
cross-trial variability in firing rate.

Firing-rate variability is stimulus dependent in a manner that 
resembles phenomena of sub-additivity. Across the cortex, it is maxi-
mal in the absence of stimulation and decreases rapidly following stim-
ulus onset22. The magnitude of the decrease depends on the amount of 
stimulus energy. For example, in area V1, low-contrast stimuli placed 
within the receptive field of a neuron are associated with stronger rate 
fluctuations than high-contrast stimuli21,33. Such variability quenching 
occurs for preferred and non-preferred stimuli that drive a neuron21,22,33, 
thus resembling response saturation in contrast summation experi-
ments. It also occurs for stimuli that do not drive a neuron22, thus 
resembling the broad tuning of suppressive effects in masking experi-
ments. Finally, stimuli presented outside of the receptive field can 
quench neural response variability beyond the reduction of variability 
caused by increasing stimulation inside the receptive field39 (Fig. 1), 
thus resembling surround suppression. The strength of this effect 
weakly depends on the similarity between the centre and surround 
stimulus39. A recent preprint has reported that the effect also depends 
on the cortical layer78 and it has also been suggested that it depends on 
the size and location of the surround stimulus40,78.

The co-occurrence of response sub-additivity and variability 
quenching can be illustrated by plotting the relationship between 
the variance and the mean for stimuli of different sizes33 (see simula-
tion in Fig. 1b). This has shown that increases in stimulus size initially 
increase both the variance and the mean of the spike count response, 
but decrease their ratio (the Fano factor)39. Further increases in stimu-
lus size cause surround suppression, reducing both the variance and 
the mean spike count, and monotonically decrease the Fano factor39. 
This relationship is illustrated in Fig. 1b, in which the simulated activity 
eventually reaches the line corresponding to a Fano factor equal to 1.

Is it a coincidence that experimental manipulations that elicit 
response sub-additivity often also quench variability (Fig. 1c)? Are 
these phenomena partly related or are they distinct manifestations 
of shared underlying mechanisms? These questions are difficult to 
answer because we cannot directly observe the signals of interest. 
There is no empirical measurement that directly reveals the strength 
of the ‘sub-additive signal’ of a cell, whereas firing rate variability is 
a statistical construct that cannot be mapped onto an observable 
biophysical quantity. Answering these questions, thus, requires a 
theoretical exploration of the issues at stake.

Models of V1 activity
The trail-blazing work of Hubel and Wiesel inspired many to build, test 
and refine models of V1 activity. There is a great deal of diversity among 
these models, reflecting differences in their underlying aspirations. 
For example, some models seek to explain V1 responses in a manner that 
remains faithful to known physiological mechanisms, thus revealing 
how the structure of neural circuits gives rise to their function54,79–82. 
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We will refer to such models as ‘mechanistic’ accounts of V1 activity. 
Other models seek to explain V1 responses on the basis of theoretical 
coding principles21,83–88, thereby revealing the computational objectives 
that shape neural function (‘normative’ accounts). Conversely, other 
models aspire to describe quantitatively the transformation of visual 
stimuli into neural responses using a limited set of operations and 
parameters that can be fit to neural data9,89–93 (‘descriptive’ accounts).

Descriptive accounts of response sub-additivity  
and variability quenching in V1
Descriptive models are useful to simulate V1 activity and, hence, 
can provide insight into V1’s representation of visual information 
that goes beyond experimentally feasible measurements94. They 
are also an essential point of comparison for studies that aim to con-
nect V1 representations to downstream transformations95, percep-
tual capabilities96,97, other sensory modalities98 and artificial visual 
systems99. We will focus here on one prominent descriptive framework, 
the ‘normalization’ model90,98,100. This model proposes that the firing 
rate of V1 neurons is determined by the ratio of the output of a narrowly 
tuned excitatory channel to that of a broadly tuned inhibitory channel. 
The excitatory channel usually consists of a linear spatio-temporal 
stimulus filtering operation followed by a nonlinear response pool-
ing operation and determines the stimulus selectivity of the neuron 
(Fig. 2a). The inhibitory channel is built from the same operations but 
has much weaker tuning. Specifically, it processes visual input over a 
larger area of visual space than the excitatory channel and is weakly 
tuned for orientation and spatial phase (Fig. 2a). Because this model 
incorporates a divisive operation, its responses saturate with increasing 
stimulus contrast — that is, once stimulus contrast exceeds a low level, 
the responses to higher stimulus contrast are sub-additive90,100. This 
occurs for preferred and non-preferred stimuli, as is the case for real V1 
cells5,9. Moreover, because the inhibitory channel is broadly tuned, the 
normalization model also exhibits cross-orientation suppression and 
surround suppression3,86,90. Importantly, in the normalization model, 
all sub-additive effects arise from a single operation. This is an extreme 
proposition, yet it provides a remarkably accurate description of classic 
sub-additive phenomena3,9.

As discussed in ‘Response variability’ section, V1 neurons often 
exhibit super-Poisson variability in a manner that resembles the effects 
of a noisy response gain. This behaviour naturally arises in the normali-
zation model when we assume that spikes arise from a Poisson process93 
and allow for noise in the normalization signal33 (Box 1). This model 
variant is known as the stochastic normalization model. As shown in 
ref. 33, including noise in the normalization signal has almost no effect 
on the mean responses of the model but alters response variability 
in a number of ways. First, because the firing rate now varies across 
repeated presentations of the same stimulus, spike generation results 
from a doubly stochastic process, yielding super-Poisson variability. 
Second, because the normalization signal provided by the inhibitory 
channel rescales the output of the excitatory channel, the additive 
noise has a multiplicative effect on firing rate, that is, it introduces gain 
fluctuations. Last, the strength of these gain fluctuations depends on 
the output of the inhibitory channel (Fig. 2b). As is evident from the 
expressions that govern the behaviour of the model33, excitatory drive 
and normalization noise increase excess response variance, whereas 
inhibitory drive has the opposite effect (Box 1, equation (5)). For this 
reason, the stochastic normalization model predicts that response 
sub-additivity and variability quenching will often co-occur, as illus-
trated for some classical experimental manipulations in Fig. 2c. It is 

important to note that these predictions have not yet been tested in 
great quantitative detail. Indeed, it is probable that additional model 
complexity will be required to capture the exact relationship between 
response sub-additivity and variability quenching. Note for example 
that, in this model (Fig. 2c), Fano factor initially increases with stimulus 
contrast. The available evidence suggests that this occurs for some cor-
tical cells but that, in most cases, Fano factor decreases monotonically 
with stimulus contrast32. The model also predicts that Fano factor 
initially increases with increasing stimulus size (Fig. 2c): based on 
the limited evidence that is available, this appears true for most, but 
not all V1 cells78 (see also ref. 39). It is possible that simple variation in 
parameter values can account for this cross-neural diversity32. However, 
it is also possible that additional model components will be required 
to fully capture these diverse empirical behaviours.

An alternative version of the stochastic normalization model 
replaces the Poisson point process with a Gaussian noise source in 
the excitatory channel32. Stimulus–response relationships are gov-
erned by different quantitative expressions, but they qualitatively 
behave in a very similar manner to those in the stochastic normalization 
model described in ref. 33. Most importantly, this variant also pre-
dicts a general quenching effect of normalization on neural response 
variability32. With the additional flexibility afforded by the stochas-
tic excitatory channel, this model can capture empirical deviations 
from the stochastic normalization model described above. Another 
important feature of this model version is that it can be inverted to 
estimate the single-trial strength of the normalization signal (which is 
a statistical construct that cannot be measured empirically), from the 
measured neural activity. Using this method, it has been shown that 
even when the stimulus is constant, normalization strength fluctu-
ates substantially across trials, and that the variability of V1 responses 
is more strongly quenched during trials in which normalization is  
stronger32.

In summary, from the vantage point of this descriptive model of 
V1 activity, many of the classical phenomena of sub-additivity appear 
to result from the same operation (divisive normalization) and neural 
responses appear to contain two layers of variability: variability of 
spiking and variability of rate. The latter (variability in firing rate) is 
quenched by the suppressive signal.

Computational and representational objectives that shape V1 
activity
The operations implemented by sensory systems are shaped by evo-
lution, development and learning and are adapted to the tasks that 
the organism must perform in its natural environment. This suggests 
that key features of sensory systems might be understood by studying 
artificial systems designed either to optimally perform such tasks101,102 
or to realize computational goals essential to these tasks103,104. Sev-
eral theoretical coding principles provide such normative insight into 
response sub-additivity and variability quenching in V1.

The most successful theoretical proposal concerning the goal 
of early sensory processing is the efficient coding hypothesis103,104. 
Applied to V1, this hypothesis states that the goal of V1 activity is to 
represent natural inputs with less statistical redundancy than is present 
in those inputs. This notion enjoys strong empirical support. When a 
set of linear filters is optimized such that filter responses to a generic 
ensemble of natural stimuli are both as informative and as statistically 
independent as possible, the resulting filters resemble the visual recep-
tive field structure of V1 simple cells83,84, particularly if the stimuli are 
natural movies rather than static natural images105.
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However, a simple linear transformation is insufficient to produce 
fully independent responses to natural images. Removing the remain-
ing statistical dependencies requires additional nonlinear response 
transformations. In particular, dividing the response of each filter by 
the weighted sum of the rectified responses of neighbouring filters 
increases response independence86. When optimized for natural image 
statistics, the resulting divisive normalization model exhibits response 
sub-additivity that is reminiscent of that seen in cortical cells. For exam-
ple, simulations of classical contrast summation, cross-orientation 
summation and size tuning experiments all yield model responses that 
qualitatively match the behaviour of V1 cells86. This framework can also 
account for the intricate cortical suppression phenomena elicited by 
natural images, namely, the observation that the strength of surround 
suppression varies widely for different images and is predicted by the 
statistical similarity between the image features presented within 
the receptive field and those presented outside the receptive field4. 
Phenomena of sub-additivity can, thus, be understood as a direct 
consequence of the attempt of the visual system to efficiently encode 
the statistical structure of natural images. In summary, this line of work 
demonstrates that the nonlinear response sub-additivity of sensory 
neurons captured by divisive normalization-based descriptive models 
(described in ‘Descriptive accounts of response sub-additivity and 
variability quenching in V1’ section) is well predicted by the normative 
principle of efficient coding. In other words, divisive normalization is 
“not an accident of biological implementation, but has an important 
functional role”86.

Although redundancy reduction leads to normalization, which 
can account for response sub-additivity, it does not provide a norma-
tive justification for variability, or its quenching, per se. In fact, neural 
variability seems at odds with the normative goal of efficient coding 
because it limits coding capacity106. However, sensory systems seek 
to do more than just represent sensory input. Ultimately, they must 
construct perceptual interpretations of the environment that facilitate 
behavioural performance. The most relevant aspects of the environ-
ment (such as the presence of potential prey or a potential predator) 
typically have a complex and ambiguous relationship with raw sensory 
input and, thus, need to be inferred. Inevitably, these inferences have 
varying degrees of certainty. To achieve optimal behavioural out-
comes, the uncertainty of perceptual inferences needs to be taken into 
account107–109. How neural circuits do so is debated and an important 
topic of modern research21,27,33,39,110–117.

A prominent hypothesis suggests that the structure of neural 
response variability in the sensory cortex may facilitate the assessment 
of perceptual uncertainty by downstream circuits. Theorists have 
proposed several variants of this idea114,118. In particular, the neural sam-
pling hypothesis proposes that neural responses in the sensory cortex 
represent samples from a probabilistic model of the environment21,118,119. 

It follows that neural response variability reflects uncertainty about 
the inferred stimulus feature. Consistent with this idea, factors that 
improve the quality of perceptual orientation estimates, such as image 
contrast and aperture size120, often also quench the response variability 
of V1 neurons21,33,39.

From a computational perspective, if sensory systems must take 
uncertainty into account, the optimal way to do so is to learn the causes 
of sensory inputs by analysing their statistical regularities and form-
ing a so-called generative model that reproduces those statistics. 
Probabilistic inference involves inverting this generative model to 
correctly map an observed input onto a probability distribution of the 
causes of that input (the so-called posterior distribution)75.

This foundational idea has recently been adapted to provide a 
unified account for the phenomenologies of response sub-additivity 
and response variability in V1 (refs. 21,39). The theory, which combines 
critical elements of efficient coding and neural sampling, proposes that 
V1 activity represents approximate probabilistic inferences based on 
a generative model of local image structure21 (Fig. 3a,b). The theory 
further postulates that images are generated by combining local fea-
tures with a global modulator that represents luminance or contrast 
(Fig. 3a). The theory assumes that the computational goal of V1 is to 
represent local image features by ‘undoing’ the effect of nuisance vari-
ables (such as the global modulator), a computation termed marginali-
zation. Marginalization has the effect of removing redundancies that 
are present in the raw visual inputs (Fig. 3c). The theory additionally 
assumes that V1 activity represents samples from the inferred posterior 
probability distribution of the feature coefficients, that is, it is a neural 
sampling-based representation (Fig. 3d). In this way, the average neural 
response (the sample mean) represents the mean of the posterior distri-
bution (the estimate of the feature coefficients that is expected to have 
minimal squared-error), whereas neural variability (sample variance) 
represents posterior variance (the uncertainty about this estimate).

When this model is optimized for natural image statistics, response 
sub-additivity and variability quenching often co-occur21,39,121. The intui-
tive explanation for this connection is that marginalization results in 
more certain inferences about local image features and is achieved 
via divisive normalization (Fig. 3b). Thus, the average neural response 
(representing the posterior mean) in this model inherits — at least 
qualitatively — the sub-additive effects predicted by the divisive nor-
malization model of efficient coding discussed above21,86. For example, 
the responses of the linear filters representing the receptive field of a 
neuron and those representing its surround are typically informative 
about the global modulator. Homogeneous images that extend beyond 
the receptive field elicit similar responses in all of these filters, sug-
gesting that the value of the global modulator is large and, therefore, 
evoking strong normalization from the surround4,122. Importantly, vari-
ability quenching arises as a consequence of the same computation: 

Fig. 2 | Response sub-additivity and variability quenching under a stochastic 
normalization model. a, Model schematic. Stimuli are first processed by a bank 
of linear–nonlinear (LN) units, whose responses are pooled to form a narrowly 
tuned excitatory channel and a broadly tuned inhibitory channel that modulates 
response gain through a divisive operation3,9,86,90,93,185. The normalization signal 
provided by the inhibitory channel is subject to stimulus-independent, additive 
noise and spikes are generated by a Poisson process33. b, Under the stochastic 
normalization model, gain variability depends on the normalization signal and 
on the level of normalization noise. This plot is a schematic representation of this 
relationship, as demonstrated in ref. 33 and shown in equation (5) of Box 1.  

c, In this model, response sub-additivity and variability quenching often co-occur. 
The top row shows simulated mean responses of the stochastic normalization 
model to some classical experimental manipulations. Details of the simulation 
are described in Supplementary Information. The predictions of the model 
provide a good quantitative account for the behaviour of V1 cells3,5,90. The 
middle row shows the associated predicted response variance, obtained from 
equation (5) in Box 1, taken from ref. 33. The bottom row shows the resulting 
variance-to-mean relationships, which directly illustrate the joint occurrence of 
response sub-additivity and variability quenching in the stochastic normalization 
model. a.u., arbitrary unit; ips, impulses per second.
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observing the image content in the surround lowers the estimation 
uncertainty about local image structure inside the receptive field and, 
thus, results in less response variability39. Conversely, when the image is  
confined to the receptive field (Fig. 3d), or when the surround image 
is part of a different object (termed heterogeneous centre–surround 
configuration4), the responses of the linear filters representing the 
receptive field and surround are less redundant (resulting in weaker 
normalization) and uncertainty about local image features is higher 
(resulting in higher response variability).

In summary, studies of the computational and representational 
objectives underlying V1 activity offer a parsimonious explanation for 
the co-occurrence of response sub-additivity and variability quench-
ing: divisive normalization in V1 serves to compute probabilistic 
inferences about visual inputs, relating sub-additive phenomena that 
maximize coding efficiency and quenching phenomena that express 
uncertainty about inferred image features.

Circuit mechanisms that govern V1 activity
V1 activity is shaped by retinal, thalamic and cortical circuit mech-
anisms. How do cortical response sub-additivity and variability 
quenching arise mechanistically from the interplay of these distinct 

anatomical components? The descriptive and normative modelling 
approaches discussed thus far offer little insight into this. These models 
are formulated in terms of normative principles and phenomenologi-
cal operations — including linear filtering, divisive normalization and 
noisy spike generation — whose biophysical and anatomical substrates 
are not specified. To address this question, we must turn to neural 
circuit models.

Response sub-additivity and variability quenching need not be 
produced by circuits within V1; they could instead arise from the inputs 
to V1. There is evidence that this is the case for the sub-additivity that 
is induced by stimuli presented in the receptive field centre54–56,123–126 
(but see ref. 67). Furthermore, variability in the firing rate of lateral 
geniculate nucleus cells decreases with stimulus contrast13,127. Thus, 
some forms of response sub-additivity and variability quenching in 
the cortex may have, at least in part, a feedforward origin.

In other cases, cortical circuitry might be the source of response 
sub-additivity and variability quenching. For example, there is evi-
dence that cortical circuitry has a major role in the sub-additivity of 
surround suppression64,128 and the quenching of variability elicited by 
stimuli presented in the surround40,78. How cortical circuits produce 
response sub-additivity and variability quenching is an active topic 

Box 1

The stochastic normalization model
In the stochastic normalization model (Fig. 2), inhibitory 
drive suppresses response strength and quenches response 
variability33. Consider the simplest instantiation of the 
normalization framework98:

=
+

λ S
E S

β I S( )
( )

( ) (1)

where λ is firing rate, S is an image, E is the excitatory drive obtained 
by measuring the contrast energy of a stimulus at a specific location 
in visual space and within a narrow range of orientations and spatial 
frequencies, I is the inhibitory drive obtained by measuring energy 
across a more extended region and across a broad range of orientations 
and spatial frequencies, and β is a stimulus-independent constant90. 
Equation (1) specifies a deterministic relationship between stimulus and 
firing rate, a statistic that is not directly observable but can be inferred 
from trial-averaged measurements. The simplest way to obtain a full 
generative model of spiking activity from this model is to include a 
Poisson point process93,95. Together, these model components suffice 
to express the probability of every possible spike count for arbitrary 
visual stimuli:

p N S t λ S t
N
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!
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where N is the spike count and Δt is the duration of the counting 
window. Under this model, response variance equals the response 
mean:

N S t N S t λ S tVar[ , ∆ ] Mean[ , ∆ ] ( ) ∆ (3)= =

The stochastic normalization model33 assumes that the 
normalization signal is not deterministic but is subject to additive 
Gaussian noise with zero mean and variance σN

2. On a single trial, 
spikes are generated from a Poisson process with a firing rate given 
by the following equation:

=
+ + �

λ S
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β I S( )
( )
( ) (4)i

i

where subscript i is a trial index and εi is the Gaussian noise  
(with zero mean and σN standard deviation). Because the denomina-
tor in equation (4) rescales the excitatory drive, this additive noise 
has a multiplicative effect on firing rate, that is, it introduces gain 
fluctuations33. The strength of these gain fluctuations depends on 
the inhibitory drive and is well approximated by the following equation:

=
+

σ
σ

β I S( ) (5)N
G

where σG expresses the standard deviation of the gain33. The 
inhibitory drive reduces gain fluctuations and, hence, reduces 
response variability. The stochastic normalization model describes 
a doubly stochastic process. It follows from the law of total variance 
that spike count variance is composed of the sum of the expected 
Poisson variance (equation (3)) and a term that represents the 
contribution of rate variability187. This term is the product of  
the variance of the gain signal and the squared mean response28  
and is given by the following equation:

=
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of contemporary research. The proposed models that have received 
the most attention (for example, see refs. 129–131) share two common 
features. First, excitatory cortical circuitry is structured: excitatory 
neurons with shared selectivity are more strongly coupled whereas 
those with distinct preferences exhibit weak coupling. Second, inhibi-
tory connections are strong enough to stabilize the network despite the 
excitatory connectivity being strong enough to potentially cause insta-
bility. These features are apparent in the cortex45,132–136, although there 
is as yet limited direct evidence for their role in response sub-additivity 
or variability quenching (but see ref. 132).

Cortical neurons receive inputs from many cells. A neuron 
receiving a large number of excitatory inputs, without compensating 
inhibition, would have a large mean input and exhibit regular clock-like 
spiking, inconsistent with the variable firing observed in cortical 
cells18,137. Therefore, a number of additional mechanisms have been 
proposed to account for spiking variability. Two possible sources of 
variability are stochasticity in the cellular and synaptic mechanisms 
that drive firing138–140 and input correlations that prevent the variability 
of individual inputs from being averaged out141,142. Spiking variabil-
ity can also arise from network dynamics: if inhibition balances exci-
tation sufficiently that the mean input to a cell is below or close to the 
threshold required to drive firing, the neuron will be driven to fire by 
input fluctuations — brief imbalances in excitation and inhibition — that 
occur at random times143–146. The ‘balanced network’ model144 demon-
strated that network dynamics can automatically yield such balancing 
in a broad parameter regime, without requiring the fine tuning of 

parameters. This model produced ‘tight balance’, which means that 
the excitatory and inhibitory inputs are much larger than the net input 
remaining after they cancel one another147. However, tightly balanced 
network models do not naturally produce the nonlinear input–output 
transformations that could give rise to response sub-additivity. They 
also do not generate super-Poisson variability or variability quenching. 
These limitations can be addressed by considering more loosely bal-
anced models147 and/or structured129 or heterogeneous148 connectivity, 
as we now discuss.

What additional sources of variability yield the super-Poisson 
variability that is characteristic of cortical neurons, and why is this addi-
tional variability quenched by the presentation of a masking or higher 
contrast stimulus? In one family of models, additional variability arises 
during spontaneous activity because the network is wandering among 
many states, each corresponding to one of the possible responses to 
many different stimuli, and neurons fire at different rates in different 
states129,149. A stimulus ‘pins’ the network to one state, quenching the 
variability. Some of these models depend on specific connectivity. For 
example, given stronger connections within and weaker connections 
between distinct clusters of excitatory units in an otherwise balanced 
network, in which the activity of one cluster inhibits the others, network 
activation can be largely restricted to one cluster at a time and wander 
between clusters over time129. A similar mechanism involves neurons 
being most strongly connected to neurons with similar response 
properties, thus forming a continuum of clusters rather than discrete 
clusters. Consistent with this idea, spontaneous activity in V1 has been 
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Fig. 3 | A normative account for the relationship between response 
sub-additivity and variability quenching in V1. a, The local structure of natural 
images can be described as a linear combination of a set of spatially localized 
image features (gC1, gS1, gS2 and so on) that is subject to global modulation (m) 
and noise (that is, as a Gaussian scale mixture model)186. b, Encoding image 
information by inferring the contribution of each local feature (that is, by 
computing the posterior distribution, top equation) naturally results in divisive 
response suppression and response variability quenching for higher values of 
the global modulator39 (for example, for images with higher contrast levels). 
This is shown mathematically in the two equations inside the box: both the mean 
and the variance of the posterior distribution approximately scale with the 
inverse of the global modulator. c, Joint histograms of the simulated responses 
of a nearby pair of local image filters before (left) and after (right) normalizing 
by the global modulator. Responses were random samples from a simulation 
performed using the Gaussian scale mixture model described in ref. 186. Details 
of the simulation are described in Supplementary Information. The greyscale 
value in each bin is proportional to the number of cases in that bin, re-scaled for 

each column separately so that black corresponds to zero and white corresponds 
to the maximum number of cases in that column. The ‘bow tie’ shape of the joint 
histogram on the left indicates statistical redundancy between the simulated 
responses of the two filters because the variance of the responses of one filter 
(spread in the vertical direction) depends on the magnitude of the response 
of the other filter (horizontal position). Normalization reduces response 
redundancy among these filters, as indicated by the absence of the bow tie shape 
in the right panel, wherein the variance of the responses of one filter does not 
depend on the magnitude of the response of the other filter. This is also shown in 
ref. 86. d, Schematic representation of sampling-based inference in the Gaussian 
scale mixture model39. If the inferred contribution of local features is represented 
probabilistically, informative image content in the surround will lower the 
peak and narrow the width of the posterior belief in the contribution of a local 
feature positioned at the centre of the image (centre panels). If neural responses 
represent samples from the posterior distribution, this will manifest as response 
suppression and variability quenching (right panels).
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shown to wander through states resembling stimulus responses more 
often than expected by chance, in both experiments involving labo-
ratory stimuli26,150,151 and those involving natural stimuli21,27. In these 
models, a stimulus that pins the wandering reduces the variability of 
all neurons, including those not driven by the stimulus152,153, consistent 
with the finding that presentation of a stimulus quenches variability 
both in neurons that are driven by the stimulus and those that are not22. 
A related proposal is that the variability of a network is generated by 
chaotic dynamics of spontaneous activity, as occurs in tightly balanced 
networks with sufficient variability in their weights148. According to 
this model, a stimulus can then suppress variability by suppressing 
the chaos154.

It is important to note that, in these models, there is no connec-
tion between the mechanisms that alter variability and sub-additivity 
of responses. If such a model shows response sub-additivity, this must 
arise owing to mechanisms distinct from the stimulus-induced pinning 
of network state that quenches variability. However, in these models, 
changes in firing rates (which need not involve sub-additivity) are 
naturally coupled to changes in variability: for example, a decrease 
in stimulus strength decreases firing rates and increases variability 
at the same time153. A similar increase in variability accompanying 
a decrease in firing rates has been reported in a recent preprint in 
some cases of surround suppression78, and it has been suggested78,153 
that, in these cases, surround suppression arises primarily from the 
suppression of feedforward inputs (consistent with experimental 
evidence for feedforward contributions to surround suppression 
in macaque V1 (refs. 64,128) and, as reported in two recent preprints, in 
mouse V1 (refs. 155,156)). However, in most cases, a decrease in variabil-
ity accompanies surround suppression39,78 (consistent with experimen-
tal evidence for cortical contributions to surround suppression64,128). 
To explain this phenomenon, other mechanisms relying on the intrinsic 
dynamics of V1 are necessary.

An alternative model of V1 dynamics that may account for both 
variability quenching and response sub-additivity posits that the net-
work randomly fluctuates about a single steady state for a given fixed 
external input (including the input driving spontaneous activity), 
but the amplitude of the fluctuations decreases as the external input 
strength increases, quenching variability. In this model, the fluctu-
ations arise owing to external input noise and are amplified by an 
excitatory network that is stabilized by inhibitory cells131. It turns out 
that the strength of this inhibitory stabilization increases with increas-
ing external input, driving both response sub-additivity and variability 
quenching. A key feature of this stabilized supralinear network (SSN) 
model81,130,131 is that neuronal input–output functions are supralinear 
(Fig. 4a). This means that neuronal gain — the change in output per 
change in input (that is, the slope of the input–output function) — 
increases with increasing neuronal activation. The result is that the 
effective connection strengths — the change in postsynaptic firing 
rate per change in presynaptic firing rate — increase with increasing 
strength of the external input of the network130 (Box 2). This increase 
has a central role in both response sub-additivity and variability 
quenching in the SSN.

For very weak external input — below or around the level that drives 
spontaneous activity — effective synaptic strengths are weak. As a result, 
inputs from monosynaptic pathways (the external input) are much 
stronger than the inputs from disynaptic and polysynaptic pathways 
that they evoke (via the recurrent connections between cortical cells). 
Thus, responses largely follow the supralinear input–output func-
tion of decoupled cells and, hence, sum supralinearly. With increasing 

input strength, the relative contribution of recurrently driven input 
increases, eventually exceeding a point at which the excitatory sub-
network alone would become unstable. At this point, the network 
enters an inhibition-stabilized regime45,130,132,157. This transition prob-
ably occurs for weaker external input than that received during spon-
taneous activity because, at least in mouse, the cortex is already in an 
inhibition-stabilized state during spontaneous activity45. Stabilization 
occurs through ‘loose balancing’130,147 (Fig. 4b), which means that the 
recurrent input largely cancels the external input, so that the net input 
grows sublinearly as a function of the external input and that the net 
input is comparable in size to the factors that cancel (that is, the balance 
is ‘loose’). This loose balance is sufficient to yield irregular spiking158 yet 
allows nonlinear behaviours such as response sub-additivity that are 
absent when balance is tight. In particular, when a second stimulus is 
added to a first, most of the extra feedforward input is cancelled. This 
loosely balanced regime in turn divides into two parameter sub-regimes, 
in only one of which contrast saturation occurs130. However, for most 
parameters in either sub-regime, when two different stimuli are added, 
response summation is sublinear, regardless of the location of the 
second stimulus (receptive field or surround)81,130.

This mechanism also creates and quenches super-Poisson vari-
ability, as illustrated for a simple model in which there is one excitatory 
and one inhibitory population131 (Fig. 4). With both strong amplifying 
excitatory and strong stabilizing inhibitory connections, the network 
shows ‘balanced amplification’159: small input imbalances favouring 
excitation (or inhibition) strongly increase (or decrease) the drive 
to both excitatory and inhibitory cells. This can be mathematically 
summarized by formulating the dynamics in terms of the strengths 
of two patterns of activity: a difference pattern and a sum pattern, 
in which the excitatory and inhibitory population activities have oppo-
site signs or the same signs, respectively (Fig. 4a). Any actual pattern 
of excitatory and inhibitory population activities can be expressed as 
a linear combination of these two patterns. Each pattern effectively 
inhibits (or damps) its own activity, with weights λd and λs. The differ-
ence pattern excites the sum pattern with a weight wFF, but there is 
no connection in the opposite direction (that is, there is a feedforward 
connection between the two patterns159).

In this model, as external input h increases from 0, the variability, 
as measured by voltage standard deviation, first increases to a peak 
before thereafter being suppressed (Fig. 4c). The peak occurs around 
the transition between the external input-dominated and recurrent 
input-dominated regimes, in which the recurrent input starts to bal-
ance the external input (Fig. 4b). As h increases from zero, effective 
connection weights rapidly increase and wFF, the feedforward drive 
from difference patterns to sum patterns, rapidly grows (Fig. 4d). 
Thus, variability is increased by increasingly strong balanced ampli-
fication: small excitatory or inhibitory differences in the external 
noise will drive large joint fluctuations of excitatory and inhibitory 
activity. The decrease in the self-inhibition λs of the sum pattern also 
contributes, decreasing the damping of fluctuations of the sum pattern. 
Beyond the regime transition, the growth of wFF greatly slows, whereas 
λs and, later, λd grow. This represents increasingly strong inhibitory sta-
bilization, which damps fluctuations and so quenches variability. The 
net result (Fig. 4e) is that the fluctuations, initially driven by the input 
noise (h = 0), are greatly amplified in the sum direction, producing 
the peak in voltage variability (h = 2), before being quenched by the 
increasingly strong inhibitory damping (h = 15).

A signature of the SSN is a non-monotonic dependence of vari-
ability on stimulus strength (Fig. 4c), in agreement with the stochastic 



Nature Reviews Neuroscience

Perspective

normalization model (Fig. 2c). This has been demonstrated in the SSN 
for changes in contrast131, but data are not yet available from in vivo 
experiments in which sufficiently fine manipulations of contrast have 
been used to test this prediction comprehensively. In those in vivo 
experiments that have been performed, a decrease in variability with 
increasing contrast was robustly seen for larger contrasts21,22,32,160. How-
ever, the very low contrasts, for which an increase in variability would 
be expected, have not been carefully studied (although an increase in 
variability with increasing stimulus contrast at moderately lower con-
trasts was seen in a minority of cells32). Other experiments have, how-
ever, seen a clear non-monotonic change in variability with increasing 
spatial size of a stimulus, at least in some layers of V1: here, variability 
increased for the smallest sizes then decreased for larger sizes39,78.  
The SSN mechanism reproduces surround suppression of firing 
rates81, but whether it can account for the dependence of variability 

on stimulus size has not been explicitly studied. Nevertheless, we 
expect to see the same non-monotonic dependence of variability on 
stimulus size as for stimulus contrast, as the same mechanisms should 
apply in both cases.

Experimental data suggest that multiple mechanisms of surround 
suppression are engaged in different cortical layers and by different 
spatio-temporal stimulus configurations57,64,78,128. Modulation of vari-
ability might also vary accordingly39,40,78. For example, it is possible that 
(as described above) surround suppression of feedforward inputs to 
the cortex might replicate the effects of a decrease in contrast and, 
thus, increase variability, whereas surround suppression that derives 
from recurrent cortical mechanisms may represent increasingly strong 
inhibitory stabilization that decreases variability. Similar considera-
tions apply to masking suppression, which has been shown to be com-
posed of a weaker cortical component67 that can be described by the 
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Fig. 4 | Response sub-additivity and variability quenching in the stochastic 
stabilized supralinear network model. a, The left panel shows the model 
network studied in ref. 131: two recurrently connected units, representing 
the activity of populations of excitatory and inhibitory neurons, each receive 
private input noise and a common mean input. As shown in the middle panel, a 
supralinear (threshold–quadratic) neural input–output function determines the 
instantaneous firing rate of these units as a function of membrane potential. 
The dynamics of this network can be expressed in terms of two activity patterns: 
a difference pattern, in which excitatory and inhibitory activities (blue and red 
bars, respectively) have opposite signs and a sum pattern, in which they have the 
same sign. The patterns inhibit themselves with weights λd (diff) and λs (sum), 
respectively, whereas the difference pattern excites the sum pattern with weight 
wFF. b, Change in external input, recurrent input and net input (external input 
plus recurrent input) to the excitatory unit with increasing external input h. 
When the external input h is weak, it dominates recurrent input (green). However, 
when the external input is stronger, the SSN dynamics leads the recurrent 
input to largely cancel the external input. Thus, net input grows sub-linearly as 
a function of external input. Over the dynamic range of this model, balance is 
‘loose’ (that is, the net input is similar in size to the other two, cancelling, inputs) 
but would become ‘tight’ (with a net input much smaller than the others) for 
very strong (probably non-physiological) input. Loose, but not tight, balance 
can yield response sub-additivity. c, Mean firing rate (top) and voltage standard 
deviation (bottom) for the excitatory and inhibitory units, as a function of mean 
input strength h. d, Dependence of the weights λd, λs and wFF on input strength. 

e, How the dependence of these weights on input strength causes variability to 
be first amplified and then quenched with increasing input strength. We study 
the voltage fluctuations δVE and δVI of the excitatory and inhibitory units about 
their mean voltages. The black ellipses represent 1-standard-deviation contours 
of the fluctuations. When h = 0, the excitatory and inhibitory units are effectively 
uncoupled, so the ellipse represents only the external input noise filtered by 
the time constant of each isolated unit (repeated in other panels in grey, for 
comparison). The grey lines in the h = 0 panel are representative trajectories  
of δVE and δVI in simulations. The green triangular arrows and dashed lines 
between them illustrate the effects of λd and λs on the trajectories of the system.  
These drive fluctuations toward the origin, along the direction indicated by the 
arrows, and with a strength indicated by the area of the arrow. These directions, 
indicated by the dashed lines, correspond to the activities of the inhibitory unit 
and the excitatory unit when h = 0 (when the units are effectively uncoupled), and  
to the activities of the difference pattern and the sum pattern when h > 0. The 
orange triangles similarly represent the effects of wFF, by which positive (or 
negative) amplitudes of the activity of the difference pattern drive fluctuations 
in the positive (or negative) direction of the activity of the sum pattern. The rapid 
increase in wFF with the initial increase of h from 0 (part d) causes variability to be 
strongly amplified in the direction of the sum pattern (seen for h = 2), creating 
super-Poisson variability. The subsequent growths of λd and λs (part d) quench 
this variability (seen for h = 15). Parts a, c, d and e are adapted from ref. 131. 
CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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SSN (ref. 81) and a stronger component that arises owing to masking 
effects on the feedforward inputs to cortex54–56,123–126.

In summary, in mechanistic models of V1 activity, response 
sub-additivity and variability quenching can both arise via network 
effects that yield increasingly strong inhibitory stabilization as stimu-
lus strength increases. Variability quenching can also arise through 
stimulus pinning of wandering network activity, without any necessary 
connection to response sub-additivity. In all of these models, suppres-
sion of feedforward input will suppress responses and is expected to 
increase variability. Particular forms of sub-additivity or suppression 
may involve different sets of these mechanisms in different locations. 
Thus, mechanistic models suggest that sub-additivity will often, but 
not always, co-occur with variability suppression.

Conclusions
We have seen that response sub-additivity in V1 often co-occurs with 
variability quenching. Response sub-additivity arises from nonlinear 
input transformations whereas response variability results from the 
accumulation and amplification of small amounts of noise as signals 
flow through neural circuits. It is, therefore, not obvious that both 
phenomena should have common origins. Yet, that is exactly what we 
propose. This proposal is motivated by recent model-based insights into 
the functional operations, computational objectives and circuit mecha-
nisms that govern V1 activity. Although these modelling approaches 
address different aspects of cortical activity and rely on very different 
model architectures, they all predict that response sub-additivity and 
variability quenching will often co-occur. We do not wish to suggest 
that a single circuit mechanism underlies this relationship: indeed, 
different forms of response sub-additivity and variability quenching 
probably arise from distinct circuit mechanisms. Moreover, more work 
is needed to establish whether the discussed models are rich enough 
to account for the diversity of neural behaviours seen within the same 

experimental paradigm. That said, the converging insights naturally 
raise new questions. We end this Perspective by considering three ques-
tions that seem particularly important to us: can the modelling insights 
be unified, is the connection between response sub-additivity and 
variability quenching a canonical motif across cortex, and do specific 
model components map onto specific subtypes of neurons?

Descriptive, normative and mechanistic modelling approaches 
offer different levels of explanation, but they are not mutually exclusive 
enterprises. Progress at one level can spark progress at another level. 
For example, refining descriptive models to better capture the diverse 
effects of surround stimulation on response suppression3,11 has pro-
vided critical guidance for normative models of V1 activity39,86. Likewise, 
descriptive accounts of variability quenching across the cortex22 
inspired progress in mechanistic models of spiking activity129,131. 
More direct examples of cross-level interactions are offered by 
recent attempts to combine different levels of explanation in a single 
model82,121. One study121 has bridged normative and mechanistic levels 
by optimizing the connectivity of the SSN architecture for proba-
bilistic inference, so that SSN response variability closely matched 
the variability produced by a sampling-based normative model for 
stimuli with a cross-orientation mask. The network optimized for this 
variability structure was precisely in the SSN loosely balanced regime 
described above that shows response sub-additivity and variability 
quenching. The study also showed that this SSN regime reproduced 
other cortical phenomena for which it was not directly optimized, 
including contrast-controlled oscillations (see also the findings of a 
recent preprint161) and stimulus-onset transients, each of which had 
a functionally well-defined role in network computations.

Another recent study has developed a model that bridges descrip-
tive and a mechanistic levels. Specifically, the family of dynamic circuit 
models called oscillatory recurrent gated neural integrator circuits 
(ORGaNICs (ref. 82)) was explicitly designed to produce a steady state 

Box 2

Effective connection strengths in the SSN model
Effective connectivity scales with input strength in the stabilized 
supralinear network (SSN)130 (see also refs. 81,131). In the SSN (Fig. 4), 
at steady state, the contribution of a particular presynaptic cell to the 
input of a postsynaptic cell, I, is simply given by the firing rate of  
the presynaptic cell, rpre, scaled by the strength of the connection 
between the two cells, W:

I W r (7)pre= + …

where … denotes terms that are independent of the presynaptic 
neuron, such as recurrent inputs from other neurons in the network 
and external, feedforward inputs from upstream areas. The firing  
rate of the postsynaptic neuron is then determined by the neuronal 
input–output function:

=r f I( ) (8)post

Combining equations (7) and (8) yields a self-consistent equation that 
expresses the (steady-state) relationship between the firing rates of 
the presynaptic and postsynaptic neuron:

= + …r f W r( ) (9)post pre

This means that for a sufficiently small deviation in the activity of a 
presynaptic neuron (for example, owing to a change in its external 
drive or random fluctuations), δrpre, the change in the response of  
the postsynaptic neuron, δrpost, is given by the following equation:

δr f I W δr( ) (10)post pre′=

where f′(I) is the ‘neural gain’ — the slope of the input–output func-
tion at the steady-state input of the postsynaptic neuron. Thus, the 
effective connection strength between the two neurons is the actual 
connection strength scaled by the neuronal gain:

W
δr
δr f I W( ) (11)eff

post

pre
′= =

The supralinearity of f means that the rate f(I) and the gain f′(I) both 
grow with the input I, and thus so does the effective connection 
strength Weff.
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exactly described by the equations of divisive normalization. Pre-
liminary findings suggest that, similar to the SSN framework, recurrent 
inhibition in stochastic variants of ORGaNICs stabilizes the network 
when recurrent excitation would otherwise make it unstable, produc-
ing both sub-additivity and variability quenching (S. Martiniani and 
D. Heeger, personal communication). ORGaNICs relies on recurrent 
amplification through a multiplicative interaction between recurrent 
drive and recurrent gain that can be regarded as a phenomenological 
description of actual circuit mechanisms. One advantage of this model 
family is that its steady state and its variability and covariability can 
all be computed analytically, simplifying the study of large-scale and 
multi-area networks.

Looking forward, training deep neural networks whose con-
nectivity resembles visual cortical circuitry to either perform visual 
tasks162–165 or to predict responses of visual neurons166–168 holds 
promise as a powerful approach to build bridges between descrip-
tive, normative and mechanistic approaches. However, thus far, this 
approach has not yielded any insight into neural response variabil-
ity or its quenching — this is an important open challenge for future  
research.

Response sub-additivity and variability quenching are not lim-
ited to V1. Suppression of neural responses to a preferred stimulus by 
the simultaneous presentation of a non-preferred stimulus has been 
documented for many sensory169–172 and non-sensory brain areas173,174. 
Likewise, the quenching of response variability by stimulus onset is 
thought to be a general property of cortical neurons22. This raises the 
question of whether the connection between response sub-additivity 
and variability quenching is a canonical motif across the cortex. The 
insights provided by the V1 models that we have discussed suggest 
that this may be the case. Specifically, these models suggest that both 
phenomena result from neural mechanisms that implement divisive 
normalization. This operation is considered a canonical neural com-
putation that is repeated in a modular fashion in many distinct brain 
systems through a variety of circuits and mechanisms98. Determining 
the generality of the co-occurrence of response sub-additivity and 
variability quenching may reveal a canonical aspect of neural activ-
ity and as such represents a crucial step for developing a principled 
understanding of cortical computation.

The models that we have discussed offer abstracted descriptions 
of neural stimulus–response transformations. As we have highlighted, 
such abstractions can provide valuable insight into brain function 
even if the model components cannot be mapped onto biophysical 
substrates. Nevertheless, establishing such mapping is a quintessential 
goal of systems neuroscience. The recent advent of circuit-dissection 
tools capable of distinguishing the functional role of specific sub-types 
of cortical neurons41,68,175 brings this goal within experimental reach.

In this Perspective, we have focused on sub-additivity of firing rate 
and on response variability, both single-neuron response statistics. We 
have reviewed modelling frameworks that suggest unified descriptions 
and explanations for those phenomena, but that also help us to distin-
guish separate mechanisms underlying similar phenomena. A natural 
and important extension of this work is to additionally consider pair-
wise and population-level response statistics (such as pairwise noise 
correlations and the geometry of population activity). These statistics 
have been studied extensively in cortical areas176–178, are influenced by 
similar factors as those that elicit response sub-additivity and variabil-
ity quenching38,51,179–183, and further constrain models of neural activity.

Published online: xx xx xxxx
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